Modular Forms, Elliptic Curves and the Abc–conjecture
نویسندگان
چکیده
The ABC–conjecture was first formulated by David Masser and Joseph Osterlé (see [Ost]) in 1985. Curiously, although this conjecture could have been formulated in the last century, its discovery was based on modern research in the theory of function fields and elliptic curves, which suggests that it is a statement about ramification in arithmetic algebraic geometry. The ABC–conjecture seems connected with many diverse and well known problems in number theory and always seems to lie on the boundary of what is known and what is unknown. We hope to elucidate the beautiful connections between elliptic curves, modular forms and the ABC–conjecture.
منابع مشابه
Modular Abelian Varieties of Odd Modular Degrees
In this paper, we will study modular Abelian varieties with odd congruence numbers by examining the cuspidal subgroup of J0(N). We will show that the conductor of such Abelian varieties must be of a special type. For example, if N is the conductor of an absolutely simple modular Abelian variety with an odd congruence number, then N has at most two prime divisors, and if N is odd, then N = p or ...
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کامل